AUGMENTED REALITY – SHARED SPHERE

Mark Billinghurst

Gun Lee

University of South Australia

PGC Building – Before and After

Matty Lovell

• First responder, finding people in collapsed building

Remote Assistance

- How can expert outside the building help the first responder?
- Wearable system
 - Live camera view
 - Remote annotation
 - Information display
 - Sensor feedback

Google Glass

Camera + Processing + Display + Connectivity
Ego-Vision Collaboration (But with Fixed View)

Augmented Reality

- Combines Real and Virtual Images
- Interactive in real-time
- Virtual content registered in 3D

Azuma, R. T. (1997). A survey of augmented reality. Presence, 6(4), 355-385.

AR for Remote Collaboration

- Many previous examples
 - View sharing
 - Remote annotation
 - Virtual video conferencing

HoloLens Remote Assist

- Share workers view with remote expert on desktop
- Support AR annotations, gesture input

https://www.youtube.com/watch?v=UpmolMrf5HQ

Current Collaboration on Wearables

- First person remote conferencing/hangouts
- Limitations
 - View fixed to sender, Lack of spatial understanding
 - Few communication cues, Limited situational awareness

Social Panoramas (ISMAR 2014)

Capture and share social spaces in real time
Supports independent views into Panorama

Implementation

Google Glass

- Capture live image panorama (compass + camera)
- Remote device (tablet)
 - Immersive viewing, live annotation

User Interfaces

Glass View

Social Panorama Demo

JackIn – Live Immersive Video (2015)

Jun Rekimoto – University of Tokyo/Sony CSL

JackIn Hardware

- Wide angle cameras 360 degree video capture
- Live video stitching

JackIn Demo

Sports Virtual Reality with JackIn Head

Joseph Tame – Tokyo Marathon

- Live streaming from Tokyo marathon
 http://ioconhto.mo/on/tokyo marathon
- http://josephta.me/en/tokyo-marathon/

Inexpensive 360 Cameras

Kodac 360 Fly 360 Gear 360 Theta S Nikon

LG 360

Pointgrey Ladybug Panono 360 Bublcam

Shared Sphere

Shared Sphere System Features

- AR / VR view collaboration
 - VR user feels that they are in AR users location
- View independence
 - Allow one user to look around independently from another
- View awareness cues
 - Show where the other user is looking
- Hand gesture communication cues
 - Sharing hand gesture cues

Guest user's view

Guest user's view

Guest user's view

View Awareness Cues

Guest user's view

Host user's view

- View Frame Rectangle
- Optional high-resolution camera inset on guest user

View Awareness Cues

Guest user's view

Arrow indicating the view frame out of FOV

View Awareness Cues

Host user's view

Arrow size proportional to the angular distance

Hand Gestures

• One of the representative non-verbal comm. cues

Guest user's view

Host user's view

Hand Gestures

Shared Sphere

Empathic Computing Lab 2017

Preliminary User Study

- Focus Group Style
 - Tech Demonstration
 - Each participant tried both 'host' and 'guest' user interfaces
 - Task: guessing what other user is looking at
 - 3 configurations: No cue, View Frame only, View Frame+Arrow
 - Questionnaire
 - How easy it was to find other person's view? (7-point Likert scale)
 - Strengths and weakness of the system?
 - Group Discussion

Rating Results

- Friedman test (α =.05) $\chi^2(2)$ =16, p=.0003
 - Post-hoc tests: WSR with Bonferroni correction (α =.0167)

Qualitative Results

Strength

- Immersive experience and independent view control (6 of 8)
- Easily understand what other user is looking at (4 of 8)
- Supporting sharing hand gesture (3 of 8)

Weakness

- Motion sickness: turning and moving view (6 of 8)
 - Better image stabilisation, pause/dim while moving
- Narrow field of view

Shared Sphere Version 2.0

- Collaboration with SA Power Networks, Nova Systems, PTC
- Features added
 - Remote pointing
 - Remote annotation
 - Audio streaming
 - Backpack VR setup
 - HoloLens AR display
 - HTC Vive VR display
 - Improved capture hardware
- Testing with SAPN personnel

- 360 Panorama-based Mixed Reality Collaboration

FRONTIER 4.0

Technology Trends

- Advanced displays
 - Wide FOV, high resolution
- Real time space capture
 - 3D scanning, stitching, segmentation
- Natural gesture interaction
 - Hand tracking, pose recognition
- Robust eye-tracking
 - Gaze points, focus depth
- Emotion sensing/sharing
 - Physiological sensing, emotion mapping

Remote 3D Scene Sharing

Static local environment capturing and sharing for MR Remote Collaboration

Lei Gao¹ Huidong Bai¹ Robert W. Lindeman¹ Mark Billinghurst²

¹University of Canterbury ²University of South Australia

3D Scene Capture

Scene Capture

Technology Trends

- Advanced displays
- Real time space capture
- Natural gesture interaction
- Robust eye-tracking
- Emotion sensing/sharing

Empathic Tele-Existence

Conclusion & Future Work

Shared Sphere

- View independence
- View awareness cues
- Hand gesture communication cues

Future work

- Further formal user evaluation with real-world scenarios
- Richer non-verbal communication cues (eye gaze, face exp.)
- Scaling up to 1-to-many sharing
- Better scene capture 3D capture

www.empathiccomputing.org

mark.billinghurst@unisa.edu.au

@marknb00